If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+33=30x
We move all terms to the left:
5x^2+33-(30x)=0
a = 5; b = -30; c = +33;
Δ = b2-4ac
Δ = -302-4·5·33
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-4\sqrt{15}}{2*5}=\frac{30-4\sqrt{15}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+4\sqrt{15}}{2*5}=\frac{30+4\sqrt{15}}{10} $
| 2r+2=15 | | 4+2r=15 | | 7(x-2)-x(x-4)=8 | | 8w+-14=34 | | 7x-72+3x+40=180 | | 7x-72+3x-40=180 | | 0.1x^2-x+2.5=0 | | 17+18=w | | 45+r=63 | | 7x-72+3x-30=180 | | a/1-a/3+a/5=26 | | y-36=72 | | d+24=85 | | 2(x+12)=96 | | d+24=86 | | 17-f=9 | | b-8=11 | | (2z/5)+(z/10)=3 | | (−6y−8)−(6y−4)=6y−148 | | 8d=105 | | x+(0.15x)/3=10.35 | | 30=14.7+.45x | | 13x-36=16 | | 987,654-b=12 | | 9(8d-5)+13=12d-12 | | b-48.97=3 | | 3x=-3/4 | | 10,987-b=312 | | 5n-2n=4=-11 | | x/1-3/4=-2x | | b-10,987=37 | | 3.8n-13=13=1.4n+5 |